CORRIGENDUM: A novel wavelength-adjusting method in InGaN-based light-emitting diodes
نویسندگان
چکیده
The pursuit of high internal quantum efficiency (IQE) for green emission spectral regime is referred as "green gap" challenge. Now researchers place their hope on the InGaN-based materials to develop high-brightness green light-emitting diodes. However, IQE drops fast when emission wavelength of InGaN LED increases by changing growth temperature or well thickness. In this paper, a new wavelength-adjusting method is proposed and the optical properties of LED are investigated. By additional process of indium pre-deposition before InGaN well layer growth, the indium distribution along growth direction becomes more uniform, which leads to the increase of average indium content in InGaN well layer and results in a redshift of peak-wavelength. We also find that the IQE of LED with indium pre-deposition increases with the wavelength redshift. Such dependence is opposite to the IQE-wavelength behavior in conventional InGaN LEDs. The relations among the IQE, wavelength and the indium pre-deposition process are discussed.
منابع مشابه
On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer
Related Articles Multilayered graphene anode for blue phosphorescent organic light emitting diodes Appl. Phys. Lett. 100, 133304 (2012) Multilayered graphene anode for blue phosphorescent organic light emitting diodes APL: Org. Electron. Photonics 5, 82 (2012) Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser Appl. Phys. Lett. 100, 13111...
متن کاملOblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes.
This paper presents a novel and mass-producible technique to fabricate indium-tin-oxide (ITO) nanorods which serve as an omnidirectional transparent conductive layer (TCL) for InGaN/GaN light emitting diodes (LEDs). The characteristic nanorods, prepared by oblique electron-beam evaporation in a nitrogen ambient, demonstrate high optical transmittance (T>90%) for the wavelength range of 450nm to...
متن کاملBroadband full-color monolithic InGaN light-emitting diodes by self-assembled InGaN quantum dots
We have presented broadband full-color monolithic InGaN light-emitting diodes (LEDs) by self-assembled InGaN quantum dots (QDs) using metal organic chemical vapor deposition (MOCVD). The electroluminescence spectra of the InGaN QDs LEDs are extremely broad span from 410 nm to 720 nm with a line-width of 164 nm, covering entire visible wavelength range. A color temperature of 3370 K and a color ...
متن کاملConfocal microphotoluminescence of InGaN-based light-emitting diodes
Spatially resolved photoluminescence PL of InGaN/GaN/AlGaN-based quantum-well-structured light-emitting diodes LEDs with a yellow-green light 530 nm and an amber light 600 nm was measured by using confocal microscopy. Submicron-scale spatial inhomogeneities of both PL intensities and spectra were found in confocal micro-PL images. We also found clear correlations between PL intensities and peak...
متن کاملCharacteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes
Highly efficient light-emitting diodes (LEDs) emitting ultraviolet (UV), blue, green, amber and red light have been obtained through the use of InGaN active layers instead of GaN active layers. Red LEDs with an emission wavelength of 675 nm, whose emission energy was almost equal to the band-gap energy of InN, were fabricated. The dependence of the emission wavelength of the red LED on the curr...
متن کامل